Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Journal of biomolecular techniques : JBT ; 33(3), 2023.
Article in English | EuropePMC | ID: covidwho-2251034

ABSTRACT

Background: Supply chain disruptions during the COVID-19 pandemic have affected the availability of components for specimen collection kits to detect SARS-CoV-2. Plastic injection molding offers a rapid and cheap method for mass production of swabs for upper respiratory tract sampling. Local production of virus transport medium increases flexibility to assemble sample collection kits if the medium provides appropriate stability for SARS-CoV-2 detection. Methods: A locally produced virus transport medium and a novel injection molded plastic swab were validated for SARS-CoV-2 detection by reverse-transcription quantitative polymerase chain reaction. Both components were compared to standard counterparts using viral reference material and representative patient samples. Results: Clinical testing showed no significant differences between molded and flocked swabs. Commercial and in-house virus transport media provided stable test results for over 40 days of specimen storage and showed no differences in test results using patient samples. Conclusions: This collection kit provides new supply chain options for SARS-CoV-2 testing.

2.
J Biomol Tech ; 33(3)2022 10 15.
Article in English | MEDLINE | ID: covidwho-2251033

ABSTRACT

Background: Supply chain disruptions during the COVID-19 pandemic have affected the availability of components for specimen collection kits to detect SARS-CoV-2. Plastic injection molding offers a rapid and cheap method for mass production of swabs for upper respiratory tract sampling. Local production of virus transport medium increases flexibility to assemble sample collection kits if the medium provides appropriate stability for SARS-CoV-2 detection. Methods: A locally produced virus transport medium and a novel injection molded plastic swab were validated for SARS-CoV-2 detection by reverse-transcription quantitative polymerase chain reaction. Both components were compared to standard counterparts using viral reference material and representative patient samples. Results: Clinical testing showed no significant differences between molded and flocked swabs. Commercial and in-house virus transport media provided stable test results for over 40 days of specimen storage and showed no differences in test results using patient samples. Conclusions: This collection kit provides new supply chain options for SARS-CoV-2 testing.


Subject(s)
COVID-19 , Neoplasms , Humans , SARS-CoV-2 , COVID-19 Testing , Pandemics , Nasopharynx/chemistry , Specimen Handling/methods , Culture Media , RNA, Viral
SELECTION OF CITATIONS
SEARCH DETAIL